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Abstract: Binary forecasts on hydroclimatic extremes play a critical part in disaster prevention and risk management. While 

the recent WeatherBench 2 provides a versatile framework for the verification of deterministic and ensemble forecasts, this 

paper presents an extension to binary forecasts on the occurrence versus non-occurrence of hydroclimatic extremes. 

Specifically, sixteen verification metrics on the accuracy and discrimination of binary forecasts are employed and scorecards 

are generated to showcase the predictive performance. A case study is devised for binary forecasts of wet and warm extremes 10 

obtained from both deterministic and ensemble forecasts generated by three data-driven models, i.e., Pangu-Weather, 

GraphCast and FuXi, and two numerical weather prediction products, i.e., ECMWF’s IFS HRES and IFS ENS. The results 

show that the receiver operating characteristic skill score (ROCSS) serves as a suitable metric due to its relative insensitivity 

to the rarity of hydroclimatic extremes. For wet extremes, the GraphCast tends to outperform the IFS HRES with the total 

precipitation of ERA5 data as ground truth. For warm extremes, the Pangu-Weather, GraphCast and FuXi tends to be more 15 

skilful than the IFS HRES within 3-day lead time but become less skilful as lead time increases. In the meantime, the IFS ENS 

tends to provide skilful forecasts of both wet and warm extremes at different lead times and at the global scale. Through 

diagnostic plots of forecast time series at selected grid cells, it is observed that at longer lead times, forecasts generated by 

data-driven models tend to be smoother and less skilful compared to those generated by physical models. Overall, the extension 

of the WeatherBench 2 facilitates more comprehensive comparisons of hydroclimatic forecasts and provides useful information 20 

for forecast applications. 
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1 Introduction 25 

Accurate numerical weather prediction (NWP) is of great importance to the economy and society (Bi et al., 2023; Lam et 

al., 2023; Bauer et al., 2015). Conventionally, physical NWP models formulate the governing equations of coupled physical 

processes in land, ocean and atmosphere and therefore predict weather conditions in the near future based on predetermined 

initial meteorological fields (Lam et al., 2023; Bauer et al., 2015). Due to advances in remote sensing, data assimilation and 

computational infrastructure, physical NWP models have witnessed steady improvements and been extensively employed in 30 

operational forecasting (Bauer et al., 2020). For example, the European Centre for Medium-range Weather Forecast (ECMWF) 

operates the Integrated Forecast System (IFS) that has implemented a significant resolution upgrade and methodology for high-

resolution forecasts (HRES) and ensemble forecasts (ENS) at the horizontal resolution of 0.1 degrees since January 2016 

(Balsamo et al., 2023). 

Data-driven NWP models have recently gained increasing popularity in hydroclimatic forecasting (Ben Bouallègue et al., 35 

2024; Rasp et al., 2024; de Burgh-Day and Leeuwenburg, 2023; Xu et al., 2024a). Early models, such as the UNet architecture-

based cubed sphere projection (Weyn et al., 2020) and deep Resnet architecture-based models (Clare et al., 2021; Rasp and 

Thuerey, 2021), were of moderate spatial-temporal resolution and forecast skill. Recent deep learning models, such as graph 

neural network (Keisler, 2022) and FourCastNet (Pathak et al., 2022), began to match operational NWP models in resolution 

and skills. Pangu-Weather (Bi et al., 2023) and GraphCast (Lam et al., 2023) even outperformed the HRES in terms of some 40 

deterministic metrics. The Neural General Circulation Models (NeuralGCM) that integrates data-drive and physical modules 

is considered to be the first hybrid model obtaining competitive or better scores than the HERS (Kochkov et al., 2024). The 

GenCast generates global ensemble forecasts that are comparative or even more skilful than the ENS (Price et al., 2025). 

There is a growing demand to verify the capability of physical and data-driven models in generating skilful hydroclimatic 

forecasts (Olivetti and Messori, 2024a; Zhong et al., 2024; Ben Bouallègue et al., 2024). In response to the need of a unified 45 

benchmark, the WeatherBench has been established to host a common dataset of forecasts and observations and utilizes popular 

evaluation metrics for forecast comparisons (Rasp et al., 2020). Owing to rapid advances in data-driven NWP models, the 

WeatherBench 2 has been developed to support global medium-range forecast verification (Rasp et al., 2024). By following 

established practices in the World Meteorological Organisation (WMO), the WeatherBench 2 pays attention to both 

deterministic and ensemble forecasts generated by physical and data-driven NWP models (Jin et al., 2024). Forecast 50 

verification is performed by an open-source Python code and publicly available, cloud-optimized ground-truth and baseline 

datasets (Jin et al., 2024; Olivetti and Messori, 2024b; Rasp et al., 2024). 

Besides deterministic and ensemble forecasts, there is a demand of binary forecasts in disaster prevention and risk 

management (Ben Bouallègue et al., 2024; Larraondo et al., 2020). The importance of binary forecasts arises from the 
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operational need for predicting the occurrence versus non-occurrence of hydroclimatic extremes (Jolliffe and Stephenson, 55 

2012; Larraondo et al., 2020; Rasp et al., 2020). Therefore, this paper aims to extend the WeatherBench 2 to binary forecasts. 

The objectives are: 1) to account for verification metrics on binary forecasts derived from global precipitation and temperature 

forecasts; 2) to present scorecards to showcase the predictive performance on wet and warm extremes; and 3) to examine the 

sensitivity of different metrics to predefined thresholds of hydroclimatic extremes. As will be shown in the methods and results, 

the extension facilitates an effective intercomparison among binary forecasts of hydroclimatic extremes generated by data-60 

driven and physical models. 

 

2 Forecasts and metrics in the WeatherBench 2 

2.1 Forecast datasets 

The WeatherBench 2 presents a benchmark for verifying and comparing the performance of data-driven and physical 65 

NWP models (Rasp et al., 2024). On its website (https://weatherbench2.readthedocs.io), there is a database containing past 

forecasts in the year 2020: 

1) The HRES generated by the ECMWF’s IFS is widely regarded as one of the best global deterministic weather forecasts 

(Rasp et al., 2024). It offers 10-day forecasts at the horizontal resolution of 0.1 degrees with 137 vertical levels (Balsamo et 

al., 2023). In the WeatherBench2, the HRES is used as the main baseline for comparing the performance of data-driven models. 70 

2) The ENS generated by the IFS’s ensemble version is widely known as one of the best global ensemble weather forecasts. 

It consists of 1 control member and 50 perturbed members (Balsamo et al., 2023). In the WeatherBench2, the ENS is also used 

as a baseline. The average over the 50 members (ENS Mean) is considered as an additional baseline (Rasp et al., 2024). 

3) The ERA5 forecasts are hindcasts generated by the exact IFS that is employed to create the renowned ERA5 of 

historical global climate conditions (Hersbach et al., 2020). They consist of 10-day hindcasts at the horizontal resolution of 75 

0.25 degrees. 

4) The 10-day global forecast generated by graph neural network includes 6 upper-air variables at 13 pressure levels at 

the horizontal resolution of 1 degree (Keisler, 2022). This network uses an encoder to map the latitude-longitude grid to an 

icosahedron grid and a decoder to map back to the original grid after several rounds of computations. It runs autoregressively 

to forecast atmospheric states for the next 6-hour based on states from the previous two 6-hour time steps.  80 

5) The two sets of 10-day global forecasts generated by the Pangu-Weather consist of 5 upper-air variables at 13 vertical 

levels and 4 surface variables at the horizontal resolution of 0.25 degrees (Bi et al., 2023). The Pangu-Weather is based on the 

vision transformer architecture and hierarchical temporal aggregation. Four time steps, i.e., 1, 3, 6 and 24 hours, are chained 
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autoregressively to generate forecast at any lead time based on the current atmospheric states. 

6) The two sets of 10-day forecasts generated by the GraphCast includes 6 upper-air variables at 37 vertical levels and 5 85 

surface variables at the horizontal resolution of 0.25 degrees (Lam et al., 2023). The GraphCast is based on the architecture of 

graph neural network. It runs autoregressively to forecast atmospheric states for the next time step based on states from the 

previous two time steps at the temporal resolution of 6 hours. 

7) The 10-day global forecasts generated by the spherical convolutional neural networks (CNNs) are composed of 6 

upper-air variables at 13 vertical levels (Esteves et al., 2023). The Spherical CNNs extend the CNNs to the sphere domains 90 

through leveraging the spherical convolutions as the primary linear operation. It produces forecasts at the longitude resolution 

of 1.4 degrees and the latitude resolution of 0.7 degrees. 

8) The 15-day global forecasts generated by the FuXi consists of 5 upper-air variables at 13 vertical levels and 5 surface 

variables at the horizontal resolution of 0.25 degrees (Chen et al., 2023). The FuXi is an autoregressively cascading model 

based on the U-Transformer architecture. It comprises three sub-models fine-tuned for forecasting 0-5, 5-10 and 10-15 days 95 

ahead at the temporal resolution of 6 hours. The atmospheric states for the next time step are forecasted based on the states 

from the previous two time steps. 

9) The 15-day deterministic and ensemble forecasts generated by NeuralGCM are composed of 7 upper-air variables at 

37 vertical levels at the temporal resolution of 12 hours (Kochkov et al., 2024). The NeuralGCM integrates the differential 

dynamical core and the learned physics module. The deterministic version is trained in the horizontal resolution of 0.7 degrees. 100 

The ensemble version is trained for the horizontal resolution of 1.4 degrees and is run to produce 50 members. 

 

2.2 Verification metrics 

The WeatherBench 2 takes into consideration in total 6 metrics for deterministic forecasts and 6 metrics for ensemble 

forecasts, as shown in Table 1. In forecast verification, the ERA5 data is used as the ground truth for verifying the data-driven 105 

models. For the sake of fair comparison with the data-driven models, the initial conditions of the IFS HRES is used as the 

ground truth for verifying IFS forecasts (Lam et al., 2023). As precipitation is not available for IFS HRES’s initial conditions, 

the total precipitation of ERA5 data is used as the ground truth data for all models. In the initial version of the WeatherBence2, 

the verification is conducted for forecasts initialized at 00 and 12 UTC for the period from 1 January 2020 to 31 December 

2020. All forecasts, baseline data and ground truth data are resampled to the horizontal resolution of 1.5 degrees that is used 110 

as the standard resolution for forecasts verification by the WMO and ECWMF (Rasp et al., 2024). 

 

Table 1 Metrics for deterministic and ensemble forecasts in the WeatherBench 2. 

https://doi.org/10.5194/egusphere-2025-3
Preprint. Discussion started: 6 February 2025
c© Author(s) 2025. CC BY 4.0 License.



 5 

Forecast Metric [min, max] Optimal value 

Deterministic Root mean square error (RMSE) [0, +∞) 0 

 Mean square error [0, +∞) 0 

 Mean absolute error [0, +∞) 0 

 Bias (−∞, +∞) 0 

 Anomaly correlation coefficient [−1, 1] 1 

 Stable Equitable Error in Probability Space (SEEPS) [0, 1] 0 

Ensemble Continuous ranked probability score (CRPS) [0, +∞) 0 

 Ranked probability score (RPS) [0, +∞) 0 

 Spread-Skill Ratio [0, 1] 1 

 Energy score [0, +∞) 0 

 Brier score (BS) [0, 1] 0 

 Ignorance score [0, +∞) 0 

 

3 Verification of binary hydroclimatic forecasts 115 

3.1 Conversion to binary forecasts 

Binary forecasts on the occurrence versus non-occurrence of target events can be generated from deterministic and 

ensemble forecasts by using predefined thresholds of hydroclimatic events (Ben Bouallègue et al., 2024). As to precipitation, 

the 90th percentile of the 24-hour accumulation of total precipitation (TP24h) is considered as the threshold, above which the 

TP24h is considered as the wet extreme (North et al., 2013). As to temperature, the 90th percentile of the 24-hour maximum 120 

of 2m temperature (T2M24h) is set as the threshold, above which the T2M24h is categorized as the warm extreme (Olivetti 

and Messori, 2024b). Given the pre-defined threshold (𝑞), deterministic forecasts are converted into either 0 or 1: 

𝐼(𝑓𝑛 > 𝑞) = {
1, 𝑓𝑛 > 𝑞
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1)  

where 𝑓
𝑛
 represents the 𝑛-th deterministic forecast. By contrast, ensemble forecasts are converted into forecast probabilities 

by using the Weibull’s plotting position (Makkonen, 2006): 

𝑝𝑓𝑛 =
∑ 𝐼(𝑓𝑛,𝑚 > 𝑞)𝑀
𝑚=1

𝑀 + 1
 (2)  

where 𝑓𝑛,𝑚 is the 𝑚-th member of the 𝑛-th ensemble forecasts and 𝑀 is the number of ensemble members. 125 

In relation to the corresponding observations, binary forecasts can be divided into four categories, i.e., hits (𝑎), false 

alarms (𝑏), misses (𝑐) and correct rejections (𝑑), as shown in Table 2 (Larraondo et al., 2020). The hits represent events that 

are successfully forecasted; the false alarms are non-events that are incorrectly forecasted as events; the misses denote events 

that are incorrectly forecasted as non-events; and the correct rejections represent non-events that are correctly forecasted as 

non-events. The proportion of the observed events to the total number of events and non-events is the base rate, with lower 130 

values often corresponding to events that are more extreme (Ferro and Stephenson, 2011). 
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Table 2. Contingency table for binary forecasts. 

 Observed events Observed non-events Total 

Forecasted 

events 
𝑎 =

{
 

 ∑ 𝐼(𝑓𝑛 > 𝑞|𝑝𝑜𝑛 = 1)
𝑁

𝑛=1
, 𝑖𝑓 𝑀 = 1

∑ 𝐼(𝑝𝑓𝑛 > 𝑐|𝑝𝑜𝑛 = 1)
𝑁

𝑛=1
, 𝑖𝑓 𝑀 ≥ 2

 𝑏 =

{
 

 ∑ 𝐼(𝑓𝑛 > 𝑞|𝑝𝑜𝑛 = 0)
𝑁

𝑛=1
, 𝑖𝑓 𝑀 = 1

∑ 𝐼(𝑝𝑓𝑛 > 𝑐|𝑝𝑜𝑛 = 0)
𝑁

𝑛=1
, 𝑖𝑓 𝑀 ≥ 2

 𝑎 + 𝑏 

Forecasted 

non-events 
𝑐 =

{
 

 ∑ 𝐼(𝑓𝑛 ≤ 𝑞|𝑝𝑜𝑛 = 1)
𝑁

𝑛=1
, 𝑖𝑓 𝑀 = 1

∑ 𝐼(𝑝𝑓𝑛 ≤ 𝑐|𝑝𝑜𝑛 = 1)
𝑁

𝑛=1
, 𝑖𝑓 𝑀 ≥ 2

 𝑑 =

{
 

 ∑ 𝐼(𝑓𝑛 ≤ 𝑞|𝑝𝑜𝑛 = 0)
𝑁

𝑛=1
, 𝑖𝑓 𝑀 = 1

∑ 𝐼(𝑝𝑓𝑛 ≤ 𝑐|𝑝𝑜𝑛 = 0)
𝑁

𝑛=1
, 𝑖𝑓 𝑀 ≥ 2

 𝑐 + 𝑑 

Total 𝑎 + 𝑐 𝑏 + 𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝑁 

Where 𝑀 = 1 and 𝑀 ≥ 2 respectively denote the deterministic forecasts and ensemble forecasts; N is the number of pairs of observations 

and forecasts for verification; 𝑝𝑜𝑛 represents the binary observation with a value of 1 for the event and 0 for non-event; 𝑐 denotes the 135 

probability thresholds above which the events are forecasted to occur. 

 

3.2 Verification metrics for binary forecasts 

Given the challenges posed by varying hydroclimatic extremes and imbalanced samples, in total 16 metrics are utilized 

to examine the performance of binary forecasts (Jolliffe and Stephenson, 2012; North et al., 2013). There are 7 base-rate-140 

dependent metrics and 9 base-rate-independent metrics. The base-rate-dependent metrics provide insights into the performance 

in relation to varying frequency of extreme events (Jolliffe and Stephenson, 2012). On the other hand, the base-rate-

independent metrics are suitable for comparing forecasts across different climate regions or time periods, in which the 

frequency of extreme events differs substantially (Ferro and Stephenson, 2011; Jacox et al., 2022). Their equations, ranges and 

optimal values are presented in Table 3. 145 

 

Table 3. Metrics for binary forecasts. 

Metric Equation 
[min, 

max]  

Optimal 

value 
Reference 

Base-rate-dependent metrics     

Accuracy (ACC), proportion correct 𝐴𝐶𝐶 =
𝑎 + 𝑑

𝑁
 [0, 1] 1 (Finley, 1884) 

Success ratio (SR), precision 𝑆𝑅 =
𝑎

𝑎 + 𝑏
 [0, 1] 1 (Lagadec et al., 2016) 

Critical success index (CSI), threat 

score, Gilbert score 
𝐶𝑆𝐼 =

𝑎

𝑎 + 𝑏 + 𝑐
 [0, 1] 1 

(Donaldson et al., 1975; 

Gilbert, 1884) 

Heidke skill score (HSS), Cohen’s 

Kappa 
𝐻𝑆𝑆 =

𝑎 + 𝑑 − 𝑎𝑟 − 𝑑𝑟
𝑁 − 𝑎𝑟 − 𝑑𝑟

, 𝑑𝑟 =
(𝑏 + 𝑑)(𝑐 + 𝑑)

𝑁
 [−1, 1] 1 

(Gomis-Cebolla et al., 

2023; Heidke, 1926) 
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Gilbert skill score (GSS), equitable 

threat score 
𝐺𝑆𝑆 =

𝑎 − 𝑎𝑟
𝑎 + 𝑏 + 𝑐 − 𝑎𝑟

, 𝑎𝑟 =
(𝑎 + 𝑏)(𝑎 + 𝑐)

𝑁
 

[−1/3, 

1] 
1 

(Gilbert, 1884; Schaefer, 

1990) 

Extreme dependence score (EDS) 𝐸𝐷𝑆 =
ln 𝑝 − ln𝐻

ln 𝑝 + ln𝐻
, 𝑝 =

𝑎 + 𝑐

𝑁
 [−1, 1] 1 

(Primo and Ghelli, 2009; 

Stephenson et al., 2008) 

Symmetric extreme dependence 

score (SEDS) 
𝑆𝐸𝐷𝑆 =

ln 𝑞 − ln𝐻

ln 𝑝 + ln𝐻
, 𝑞 =

𝑎 + 𝑏

𝑁
 [−1, 1] 1 

(Orozco López et al., 

2010) 

Base-rate-independent metrics     

Hit rate (H), sensitivity, recall, 

probability of detection 
𝐻 =

𝑎

𝑎 + 𝑐
 [0, 1] 1 (Swets, 1986) 

False alarm rate (F), probability of 

false detection 
𝐹 =

𝑏

𝑏 + 𝑑
 [0, 1] 0 (Donaldson et al., 1975) 

Specificity, true negative rate (TNR) 𝑇𝑁𝑅 =
𝑑

𝑏 + 𝑑
 [0, 1] 1 (Agrawal et al., 2023) 

Odds ratio skill score (ORSS), 

Yule’s Q 
𝑂𝑅𝑆𝑆 =

𝑎𝑑 − 𝑏𝑐

𝑎𝑑 + 𝑏𝑐
 [−1, 1] 1 (Stephenson, 2000) 

Peirce’s skill score (PSS), Hanssen 

and Kuipers discriminant 
𝑃𝑆𝑆 =

𝑎𝑑 − 𝑏𝑐

(𝑎 + 𝑐)(𝑏 + 𝑑)
= 𝐻 − 𝐹 [−1, 1] 1 (Peirce, 1884) 

Extremal dependence index (EDI) 𝐸𝐷𝐼 =
ln 𝐹 − ln𝐻  

ln 𝐹 + ln𝐻
 [−1, 1] 1 

(Ferro and Stephenson, 

2011) 

Symmetric extremal dependence 

index (SEDI) 
𝑆𝐸𝐷𝐼 =

ln𝐹 − ln𝐻 + ln(1 − 𝐻) − ln(1 − 𝐹) 

ln 𝐹 + ln𝐻 + ln(1 − 𝐻) + ln(1 − 𝐹)
 [−1, 1] 1 

(Ferro and Stephenson, 

2011) 

Area under receiver operating 

characteristic (ROC) curve (AUC) 
𝐴𝑈𝐶 = 𝜙(

𝜙−1(𝐻) − 𝜙−1(𝐹)

√2
) [0, 1] 1 (Swets, 1986) 

ROC skill score (ROCSS) 𝑅𝑂𝐶𝑆𝑆 = 2(𝐴𝑈𝐶 − 0.5) [−1, 1] 1 (Swets and Swets, 1986) 

 

The 7 base-rate-dependent metrics in Table 3 are influenced by the underlying distribution of observed events and non-

events (Jolliffe and Stephenson, 2012). The accuracy is calculated as the ratio between the number of hits and the total number 150 

of events and non-events (Finley, 1884). The success ratio (SR) measures the number of hits divided by the number of 

forecasted events (Lagadec et al., 2016). The critical success index (CSI) is the number of hits divided by the total number of 

forecasted and observed events (Chakraborty et al., 2023; Gilbert, 1884; Donaldson et al., 1975). The Heidke skill score (HSS) 

measures the accuracy relative to that of the random forecasts (Gomis-Cebolla et al., 2023). The Gillert skill score (GSS) 

evaluates the correctly predicted fraction of the observed and forecasted events after adjusting for the random hits (Chen et al., 155 

2018; Coelho et al., 2022). Converging to a meaningful limit, the extreme dependency score (Stephenson et al., 2008) and the 

symmetric extreme dependency score (SEDS) (Orozco López et al., 2010) are suitable for binary forecasts of rare events. 

The 9 base-rate-independent metrics in Table 3 are valuable for rare events due to their stability to the variation in the 

proportion of observed events (Ferro and Stephenson, 2011). The hit rate and false alarm rate respectively quantify the 

proportion of hits in observed events and the proportion of false alarms in observed non-events (Swets, 1986). The specificity 160 
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measures the percentage of correct rejections to observed non-events (Agrawal et al., 2023). The odds ratio skill score (ORSS) 

examines the improvement over the random forecasts (Stephenson, 2000). The Peirce’s skill score (PSS) has similar 

formulation to HSS but does not depend on event frequency (Chakraborty et al., 2023). The extremal dependence index (EDI) 

and the symmetric extremal dependence index (SEDI) are designed to be nondegenerate (Ferro and Stephenson, 2011). The 

receiver operating characteristic (ROC) examines the discrimination between hits and false alarms, quantified by the area 165 

under the ROC curve (Swets, 1986). A higher ROC skill score (ROCSS) indicates better predictive skill. For probabilistic 

forecasts, the ROCSS can be calculated by considering the hit rate and false alarm rate for all possible thresholds of probability 

(Huang and Zhao, 2022). 

 

3.3 Forecast verification 170 

Considering data availability and forecast setting, the attention is paid to 8 sets of forecasts, i.e., IFS HRES, IFS ENS, 

IFS ENS Mean, Pangu-Weather (operational), GraphCast (operational), Pangu-Weather, GraphCast and FuXi (Rasp et al., 

2024). The ground truth, spatial resolution, initial forecast time and verification period are selected by following the 

WeatherBench 2. A set of predefined thresholds ranging from the 80th to 99th percentiles of the ground truth data in 2020 are 

considered for sensitivity analysis (Olivetti and Messori, 2024b; North et al., 2013). To facilitate comparisons at regional to 175 

global scales, the 16 metrics are calculated based on the area-weighting method over grid cells (Rasp et al., 2024). The regions 

are defined by the ECMWF’s scorecards, as illustrated in Table 4. 

 

Table 4. Regions that are included in the ECMWF’s scorecards. 

Region Range Region Range 

Northern hemisphere (extra-tropics) latitude ≥ 20° Europe 35° ≤ latitude ≤ 75°, -12.5° ≤ longitude ≤ 42.5° 

Southern hemisphere (extra-tropics) latitude ≤ -20° North America 25° ≤ latitude ≤ 60°, -120° ≤ longitude ≤ -75° 

Tropics -20°≤ latitude ≤ 20° North Atlantic 25° ≤ latitude ≤ 60°, -70° ≤ longitude ≤ -20° 

Extra-tropics |latitude| ≥ 20° North Pacific 25° ≤ latitude ≤ 60°, 145° ≤ longitude ≤ -130° 

Arctic latitude ≥ 60° East Asia 25° ≤ latitude ≤ 60°, 102.5° ≤ longitude ≤ 150° 

Antarctic latitude ≤ -60° AusNZ -45°≤ latitude ≤ -12.5°, 120° ≤ longitude ≤ 175° 

AusNZ: Australia and New Zealand. 180 

 

Given the spatial and temporal clustering of hydroclimatic extremes, the two-sided paired t test with cluster-robust 

standard errors is conducted at the significance level of 0.05 to assess the differences in the performance between data-driven 
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models and IFS HRES (Olivetti and Messori, 2024b; Liang and Zeger, 1986; Shen et al., 1987). For comparison at the grid 

scale, the 16 metrics are computed separately for each grid cell. The same paired t test is performed with p value that is 185 

corrected for multiple testing using global false-discovery rates at the significance level of 0.1 (Ouyang et al., 1995; Olivetti 

and Messori, 2024b). It approximately corresponds to the significance level of 0.05 for spatially correlated hydroclimatic 

extremes (Wilks, 2016). 

 

4 Results 190 

4.1 Predictive performance across the globe 

Scorecards of the globally area-weighted ROCSS relative to the IFS HRES baseline are shown in Figure 1. As expected, 

forecasts become less accurate as lead time increases from 1 day to 10 days. For wet extremes, the IFS ENS, IFS ENS Mean, 

GraphCast (operational) and GraphCast tend to outperform the IFS HRES. At the lead times of 3 and 10 days, the ROCSS is 

respectively 0.59 and 0.16 for the IFS HRES, 0.90 and 0.55 for the IFS ENS, 0.61 and 0.17 for the IFS ENS Mean, 0.65 and 195 

0.20 for the GraphCast (operational), 0.61 and 0.16 for the GraphCast and 0.54 and 0.08 for the FuXi. For warm extremes, the 

GraphCast and FuXi tend to be more skilful than the IFS HRES within 3-day lead time. As lead time increases, data-driven 

forecasts can be less skilful than the IFS HRES. It is highlighted that the IFS ENS is remarkably more skilful than the IFS 

HRES at the lead time from 1 to 10 days. At the lead times of 3 and 10 days, the ROCSS is respectively 0.68 and 0.42 for the 

IFS HRES, 0.92 and 0.86 for the IFS ENS, 0.62 and 0.32 for the IFS ENS Mean, 0.63 and 0.29 for the Pangu-Weather, 0.68 200 

and 0.39 for the GraphCast and 0.68 and 0.32 for the FuXi. 
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Figure 1. Globally area-weighted ROCSS for wet and warm extremes. The oper. denotes operational version. The red and blue 

borders indicate significantly different performances compared to the IFS HRES at the significance level of 0.05. 205 

 

Scorecards of the area-weighted ROCSS for wet extremes relative to the IFS HRES baseline are illustrated by region in 

Figure 2. Overall, the IFS ENS stands out across different regions and lead times. The GraphCast (operational) tends to 

outperform the IFS HRES. The GraphCast tend to be better than the IFS HRES in Southern Hemisphere (extra-tropics), Arctic, 

Antarctic, Europe, North Pacific, East Asia and AusNZ. In Europe, at the lead times of 3 and 10 days, the ROCSS is 210 

respectively 0.73 and 0.19 for the IFS HRES, 0.96 and 0.64 for the IFS ENS, 0.76 and 0.23 for the GraphCast (operational), 

0.77 and 0.22 for the GraphCast and 0.69 and 0.11 for the FuXi. In the meantime, the FuXi tend to outperform the IFS HRES 

in the Southern Hemisphere (extra-tropics), tropics, North Atlantic and AusNZ at lead time less than 3 days. Except for the 

Arctic and Antarctic, the IFS ENS Mean tends to be better than the IFS HRES. The GraphCast (operational) is comparable to 

the IFS ENS Mean and marginally better in the polar regions. In the Antarctic region, the ROCSS is 0.63 and 0.06 for the IFS 215 

HRES, 0.59 and 0.01 for the IFS ENS Mean and 0.66 and 0.06 for the GraphCast (operational) at lead time of 3 and 10 days. 
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Figure 2. Regionally area-weighted ROCSS of different forecasts for wet extreme. The red and blue borders indicate significantly 

different performance compared to the IFS HRES at the significance level of 0.05. 220 

 

Scorecards of the regionally area-weighted ROCSS for warm extremes relative to the IFS HRES baseline are showcased 

in Figure 3. The Pangu-Weather, GraphCast and FuXi tend to outperform the IFS HRES within 3-day lead time except for the 
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Arctic and Antarctic. These results are consistent with the results of a previous study on forecast accuracy of warm extremes 

(Olivetti and Messori, 2024b). In the North America, North Atlantic, North Pacific, East Asia and AusNZ, the GraphCast and 225 

FuXi tend to outperform the IFS HRES at longer lead time even up to 10 days. The ROCSS in the North Atlantic is respectively 

0.39, 0.58 and 0.49 for the IFS HRES, GraphCast and FuXi at the 10-day lead time. On the other hand, the performances of 

all data-driven forecasts tend to be worse than that of the IFS HRES in the Arctic and Antarctic. In Europe, the ROCSS is 

respectively 0.78, 0.71, 0.76 and 0.75 for the IFS HRES, Pangu-Weather, GraphCast and FuXi at 5-day lead time. As averaging 

the ensemble members can filter unpredictable features to get smoother forecasts, it is not surprising that the IFS ENS Mean 230 

does not always perform as well as the IFS HRES and IFS ENS for warm extremes (Ben Bouallègue et al., 2024). 
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Figure 3. As for Figure 2, but for warm extremes. 

 235 

4.2 Predictive performance of wet extremes 

The differences in the ROCSS for wet extremes in comparison with the IFS HRES baseline are illustrated in Figure 4. 

Overall, the IFS ENS tends to outperform the IFS HRES at most grid cells across the globe. Except for the Northern Africa 
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and Arabian Peninsula, the GraphCast’s operational forecasts are comparable or more skilful than the IFS HRES. The 

GraphCast is not as skilful as the IFS HRES in more grid cells, such as Central Australia and Central Asia. The FuXi tends to 240 

be less skilful than the IFS HRES in most grid cells, such as the Atlantic and Pacific. As the lead time increases, the IFS ENS 

and GraphCast (operational) are observed to outperform the IFS HRES, while the GraphCast and FuXi underperform. These 

results are consistent with the results of Figure 1 and Figure 2. In Northern Africa, forecasts of the three data-driven models 

tend to be less skilful than the IFS HRES and IFS ENS. As the GraphCast and FuXi exhibit no hits or false alarms for many 

of or even almost all the grid cells in this region, the ROCSS is nearly zero so that their forecasts tend to be worse than the IFS 245 

HRES in the Northern Hemisphere (extra-tropics) and Tropics. 

 

 

Figure 4. Differences of IFS ENS, GraphCast (operational), GraphCast and FuXi in ROCSS to the IFS HRES for wet extremes at 

each grid cell. The grey colour indicates grid with no statistically significant differences at the significance level of 0.1. 250 

 

The time series for 24-hour accumulation of total precipitation from different forecasts initialized at 00 UTC are shown 
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for three selected grid cells in Figure 5. Overall, data-driven models can capture the temporal dynamics of precipitation but 

their forecasts are smoother than the IFS HRES (Zhong et al., 2024; Xu et al., 2024b). As lead time increases, the skill of IFS 

ENS and IFS ENS Mean tend to decrease more slowly than that of IFS HRES, while the skill of GraphCast and FuXi reduces 255 

more rapidly. For the three grid cells, the five sets of forecasts have close number of correct negatives; the IFS HRES and 

GraphCast show more hits; the IFS HRES are more capable of capturing the wet extremes but tends to produce more false 

alarms; the IFS ENS Mean and FuXi tend to underestimate the wet extremes, resulting in more misses and fewer false alarms. 

For grid cell A, at the lead times of 3 and 10 days, the ROCSS is respectively 0.63 and 0.34 for the IFS HRES, 0.92 and 0.76 

for the IFS ENS, 0.62 and 0.43 for the IFS ENS Mean, 0.75 and 0.38 for the GraphCast and 0.48 and 0.16 for the FuXi. For 260 

grid cells B and C, the numbers of hits and false alarms of FuXi are zero at 10-day lead time, leading to zero values of ROCSS. 
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Figure 5. Time series plots of TP24h forecasts initialized at 00 UTC for the IFS HRES, IFS ENS, IFS ENS Mean, GraphCast and 

FuXi over three selected grid cells, i.e., A (30°N, 105°E), B (39°N, 75°W) and C (54°N, 1.5°W). 265 
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4.3 Predictive performance of warm extremes 

The differences in ROCSS for warm extremes in comparison with the IFS HRES baseline are illustrated in Figure 6. The 

IFS ENS tends to outperform the IFS HRES, especially in low-latitude regions. As the lead time increases, the IFS ENS tends 

to be more skilful than the IFS HRES. The ROCSS of the Pangu-Weather, GraphCast and FuXi is similar to that of the IFS 270 

HRES but is lower in most grids of the Pacific, Atlantic and Arctic. The GraphCast tends to outperform the IFS HRES in the 

Northern Atlantic near the Gulf of Mexico. The spatial patterns of the differences in ROCSS are consistent with the results of 

Figure 3. As the lead time increases to 10 days, the area where the Pangu-Weather, GraphCast and FuXi are more skilful than 

the IFS HRES decreases. On the other hand, even for lead time of 10 days, the GraphCast and FuXi continue to outperform 

the IFS HRES in some regions of the North Atlantic. The different performances of global weather forecasts in different regions 275 

emphasize the necessity to verify and calibrate hydroclimatic forecasts before operational application (Ben Bouallègue et al., 

2024; Huang et al., 2022). 
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Figure 6. Differences of IFS ENS, Pangu-Weather, GraphCast and FuXi in ROCSS to the IFS HRES for warm extremes at each 280 

grid cell. The grey colour indicates grid with no statistically significant differences at the significance level of 0.1. 

 

The time series for 24-hour maximum of 2m temperature from different forecasts initialized at 00 UTC are shown for 

three selected grid cells in Figure 7. Overall, the Pangu-Weather, GraphCast and FuXi exhibit similar temperature dynamics 

over time to those of the IFS HRES. As lead time increases, these data-driven models tend to produce smoother forecasts with 285 

the skill reducing more rapidly than the IFS HRES and IFS ENS (Zhong et al., 2024; Rasp et al., 2024). For grid cells A, B 

and C, the IFS HRES and IFS ENS tend to outperform the Pangu-Weather, GraphCast and FuXi. At the lead time of 3 and 10 

days, the ROCSS for grid cell A is respectively 0.73 and 0.42 for the IFS HRES, 0.93 and 0.86 for the IFS ENS, 0.49 and 0.24 

for the Pangu-Weather, 0.51 and 0.35 for the GraphCast and 0.51 and 0.30 for the FuXi. There are more misses for the three 

data-driven models, indicating that they tend to underestimate the warm extremes. As the lead time increases from 3 to 10 days, 290 

the ROCSS for grid cell B reduces from 0.79 to 0.46 for the Pangu-Weather, from 0.79 to 0.46 for the GraphCast and from 

0.82 to 0.51 for the FuXi. By contrast, the IFS HRES and IFS ENS change less and the ROCSS decreases from 0.81 to 0.55 

for the IFS HRES and from 0.99 to 0.93 for the IFS ENS. 
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 295 

Figure 7. Time series plots of T2M24h forecasts initialized at 00 UTC for the IFS HRES, IFS ENS, Pangu-Weather, GraphCast and 

FuXi over three selected grid cells, i.e., A (30°N, 105°E), B (39°N, 75°W) and C (54°N, 1.5°W). 
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4.4 Sensitivity to predefined thresholds 

The globally area-weighted performance under different predefined thresholds is illustrated for 5-day lead time in Figure 300 

8. Among the sixteen metrics, the ROCSS is base-rate-independent and suitable simultaneously for deterministic and 

probabilistic forecasts of binary events while other metrics need the predefined probability threshold to convert the 

probabilistic forecasts to deterministic forecasts. In the meantime, it is noted that the SEDI is the most applicable to extreme 

events because of its base-rate independence and nondegenerate limit (North et al., 2013; Jolliffe and Stephenson, 2012; Brodie 

et al., 2024). These metrics changes little as the predefined thresholds increase from the 80th to the 99th percentile. Specifically, 305 

as to forecast wet extremes at 5-day lead time, the scores of GraphCast decrease from 0.74 to 0.56 for SEDI and from 0.43 to 

0.23 for ROCSS as the thresholds increase from the 80th to the 99th percentile. By contrast, the scores of GraphCast increase 

from 0.81 to 0.98 for 1-BS, from 0.87 to 0.95 for ORSS and from 0.51 to 0.52 for SEDS. These metrics are not suitable for 

hydroclimatic extremes because it contradicts that rarer events are often more difficult to predict (Ferro and Stephenson, 2011). 

 310 
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Figure 8. Globally area-weighted performance in forecasting wet extremes and warm extremes with different threshold percentiles 

at 5-day lead time. 

 

The globally area-weighted ROCSS under different predefined thresholds is shown in Figure 9. Overall, the ROCSS 315 

decreases for all eight sets of forecasts as the predefined thresholds increase from the 80th to the 99th percentile. The IFS ENS 

tends to perform better in forecasting wet extremes and warm extremes. Among the available data-driven models, the 

GraphCast (operational) tends to be more skilful for wet extremes; for warm extremes, the FuXi tends to be more skilful model 

at lead time less than 5 days and the GraphCast tends to be better at lead time more than 5 days. Specifically, as to forecast wet 

extremes at 5-day lead time, the ROCSS decreases from 0.46 to 0.24 for IFS HRES, from 0.80 to 0.77 for IFS ENS and from 320 

0.53 to 0.26 for GraphCast (operational). As to forecast warm extremes at 5-day lead time, the ROCSS decreases from 0.69 to 

0.41 for IFS HRES, from 0.93 to 0.83 for IFS ENS and from 0.70 to 0.29 for GraphCast. When the lead time is longer than 3 

days, the GraphCast, GraphCast (operational) and FuXi tend to be more skilful in predicting warm extremes (Olivetti and 

Messori, 2024b). 

 325 
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Figure 9. Globally area-weighted ROCSS for wet extremes and warm extremes with different threshold percentiles. 

 

5 Discussion 

Binary hydroclimatic forecasts provide useful information for disaster prevention and risk mitigation (Ben Bouallègue et 330 

al., 2024; Merz et al., 2020). For operational applications such as disaster warning, the focus is usually on the occurrence 

versus non-occurrence of certain hydroclimatic extremes instead of their precise magnitude (Jolliffe and Stephenson, 2012; 

Larraondo et al., 2020). In the meantime, binary forecasts emphasize the ability to capture hydroclimatic extremes that 

contribute little to average verification metrics, ensuring that models are not rewarded for merely minimizing average errors 

and unrealistically smooth forecasts (Ferro and Stephenson, 2011; Rasp et al., 2020). Binary forecasts are thus more suitable 335 

than continuous forecasts in these cases. In this paper, the results show that as lead time increases, forecasts generated by data-

driven models tend to be smoother and become less skilful more rapidly than the IFS HRES (Zhong et al., 2024; Rasp et al., 

2024). In the meantime, ensemble forecasts can provide a range of potential hydroclimatic states and are important to 
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quantifying the probability of hydroclimatic extremes (Price et al., 2025; Zhao et al., 2022; Pasche et al., 2025). 

High skill of data-driven models in forecasting wet extremes can stem from the unfair setting of ground truth data (Rasp 340 

et al., 2024; Lam et al., 2023). As is pointed out in the WeatherBench 2, the verification of precipitation using ERA5 data as 

ground truth data is a compromised setting and should be considered as a placeholder for more accurate precipitation data 

(Rasp et al., 2024). While this comparison is not fair to the IFS models, the results indicate that using data-driven models to 

forecast global medium-range precipitation is promising. In addition, the verification is limited to the wet and warm extremes 

occurring in 2020 due to current data availability. The short verification period can only provide limited information about the 345 

model performance and sensitive results to the climate variability (Olivetti and Messori, 2024b). As more forecasts and more 

accurate baseline data are becoming available, the capability to produce binary forecasts of hydroclimatic extremes warrants 

further verification. The different roles that the operational IFS analysis and ERA5 data play in the initial conditions to generate 

forecasts also deserve further verification (Ben Bouallègue et al., 2024; Liu et al., 2024; Xu et al., 2024b). 

 350 

6 Conclusions 

This paper has presented an extension of the WeatherBench 2 to binary hydroclimatic forecasts by utilizing sixteen 

verification metrics. A case study is devised for binary forecasts generated by 3 data-driven models and 2 physical models. 

Specifically, the TP24h and T2M24h are calculated from the available forecasts and ground truth in the WeatherBench 2; and 

the 90th percentiles of the ground truth data in 2020 are set as the predefined thresholds above which the wet and warm 355 

extremes are respectively detected. The results show that for wet extremes, the GraphCast and its operational version tend to 

outperform the IFS HRES when the total precipitation of ERA5 data is used as the ground truth. Their globally area-weighted 

ROCSS is 0.46, 0.50 and 0.43 at 5-day lead time, respectively. For warm extremes, the GraphCast and FuXi tend to be more 

skilful than the IFS HRES within 3-day lead time while they can be less skilful as the lead time increases. At the lead time of 

3 and 10 days, the ROCSS is 0.68 and 0.42 for the IFS HRES, 0.92 and 0.86 for IFS ENS, 0.63 and 0.29 for Pangu-Weather, 360 

0.68 and 0.39 for GraphCast and 0.68 and 0.32 for FuXi. When the predefined thresholds of wet extremes increase from the 

80th to 99th percentile, the ROCSS decreases from 0.46 to 0.24 for IFS HRES, from 0.80 to 0.77 for IFS ENS and from 0.53 

to 0.26 for GraphCast (operational) at 5-day lead time. The extension of the WeatherBench 2 to binary forecasts facilitates 

more comprehensive comparisons of hydroclimatic forecasts and provides useful information for forecast applications. 

 365 
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Code and data availability 

The forecasts and ground truth data of the WeatherBench 2 are available from the Google Cloud bucket 

(https://console.cloud.google.com/storage/browser/weatherbench2) (Rasp et al., 2024). The ERA5 data are available from the 

Copernicus Climate Data Store (https://cds.climate.copernicus.eu/) at https://doi.org/10.24381/cds.bd0915c6 (Anon, 2023a) 

and https://doi.org/10.24381/cds.adbb2d47 (Anon, 2023b). A subset of the ERA5 data is also available through the 370 

WeatherBench 2 (Rasp et al., 2024). The IFS HRES, its initial conditions and the IFS ENS are available from the ECMWF’s 

MARS archive (https://confluence.ecmwf.int/display/UDOC/MARS+user+documentation). The IFS ENS Mean is available 

through the WeatherBench 2 (Rasp et al., 2024). The training code, pre-trained parameters and access details of the data-driven 

models are provided in the respective papers of these models (Chen et al., 2023; Bi et al., 2023; Lam et al., 2023). 

The data and code performing the analysis of binary hydroclimatic forecasts are respectively archived on the Zenodo at 375 

https://doi.org/10.5281/zenodo.14691031 and https://doi.org/10.5281/zenodo.14691007 (Li and Zhao, 2025a, 2025b). 
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